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ON STABILITY OF THE PLANE FLAlctE FRONT* 

S.P. CHIKOVA 

'Ihe hydrodynamic stability of a plane flame front relative to two-dimensional pert- 
urbations in an incompressible fluid is considered. The effect of the flame front 
curvature and pressure perturbations ahead of it on the perturbed velocity of front 
propagation is taken into account. The possibility of stable combustion relative to 
long-wave perturbations and the existence of damped and intensified wave solutions 
and, also, of waves travelling along the flame front, depending on the model deter- 
mining parameters, is disclosed. 

Investigation of the plane flame front stability relative to two-~mensionalperturbations 
in an incompressible fluid was initiated by Landau /l/, where its absolute instability was 
demonstrated on the assumption of constant flame velocity. 'She effect of front curvature on 
the flame propagation velocity was taken into account by Markstein /2/, which made it possible 
to show stability of combustion relative to short-wave perturbations and its instability rela- 
tive to long wave ones. The question of existence of waves travelling along the flame front 
surface was investigated in /3/ in the case when the ratio of densities of reaction products 
and of the original mixture approaches zero. The combusion front stability relative to two- 
dimensional compressible perturbations was considered in /4,5/, and in /6/ stability was in- 
vestigated relative to one-dimensional compressible perturbations in the piston-flame-shock 
wave system. 

Let us consider the process of slow burning of a combustible mixture of gases. We assume, 
as in /I/ that the flame front is an infinitely thin gasdynamic discontinuity travelling at a 
specified constant velocity Ir', generally dependent on the composition and thermodynamic state 
of the combustible mixture. We shall use a system of coordinates attached to the flame front 
surface, with the s-axis directed along the velocity component normal to the discontinuity 
surface. We denote pressure by p,, density by csl, the normal and tangential velocity 
components ahead of the flame front by nI,ul, respectively, and by pz,~2r~2,ve the respective 
parameters of the reaction products. For the model of combustion in incompressible fluid it 
is sufficient to specify the normal flame velocity UT, and the thermal expansion coefficient 
a which is equal to the ratio of densities of products of combustion and of the original mix- 
ture. 

Using the laws of mass and momentum conservation we obtain the relation between the gas- 
dynamic parameters of combustible mixture and of reaction products atthediscontinuitysurface 

UL = iJ,, u, = U$u, VI =+vs =O, Pz=epn p2=pl-- +p,uoa (1) 

Retaining the model of incompressible fluid, we investigate the flame front stability 
relative to plane two-dimensional periodic perturbations that are potential ahead of the front 
and turbulent behind it [I/. Denoting perturbations by a prime, we have at r-GO 

ul'IUO = A exp (kx + iky - iot) (2) 

vI’IUo = iA exp (kx + iky - id) 

and at x>O 

Pi 
pIu,2==- 

(1 + il)Aexp(k1 -j- ikg - itot) 

uz’/Uo=Be?cp(-k~:r+iky-_i:‘,t)_t-~‘esp 

V~‘lUO = - iU exp (- kc 

PC = (c&2 - f)Uexp(-kz +- i/g - iwf) 
i’lff2 

(3) 

where k is the wave number and 52 the dimensionless frequency. 
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As known in acoustics /7/, the considered here perturbations correspond for real 0 to 
acoustic perturbations of a frequency lower than the critical o.+ = ka1/1 -AP, where a is the 
speed of sound and M is the Mach number. 

We take the discontinuity surface perturbation in the form of a wave periodic with res- 
pect to y and t 

s=5(u, t), b(y, t)= +-exp (i~~-~6~) (5) 

We assume the perturbed flame velocity to be 

where p and @ are constants experimentally determined for a specific gas mixture and given 
~e~odyn~~c conditions, plo’ is the perturbed pressure at the combustion front at s -0, 
and R is the radius of the perturbed flame front curvature. In linear approximation 

Formula (6) takes into account the dependence of the combustion rate not only on flame 
surface perturbations, as in f2/, but, also, on perturbations of gasdynamic parameters ahead 
of the front (in the considered here case of incompressible fluid: on pressure perturbations). 
For p= 0 the proposed model becomes that of Markstein, hence we assume, as in /2/, that 

P = POG where L =x/U, is some characteristic dimension proportional to the combustion zone 
thickness and X is the coefficient of thermal diffusivity. Value of the dimensionless constant 

p. used by various authors differ, thus in /2/ p. N 1 and in iS,9/ we - 10 + 20. 
Using (2) and (5)-- (7) we obtain for flame velocity perturbation an expression of the 

form 
%=1&D -"B1($ + Q) A]exp(iX-y- tot) 

(8) 
pt = pk = 2np& i h, @I = @pJYoa ip, 

Linearizing the perturbation relations (1) at the flame front, we have at X=0 the 
following boundary conditions: 

lLlf _~_uL-0, pz’-.p;+ (9) 

Substituting perturbations (21, (31, (5), and (8) into system (91, we obtainahomogeneous 
linear system of algebraic equations in A,B,C,D. Equating to zero the determinant of this 
system, we obtain for E;z, the cubic equation 

The Routh-Hurwitz criterion /lo/ shows that all roots of Eq.(lO) have negative real parts 
then and only then when the system of inequalities 

is satisfied. 
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The solution of this system is diagrammatically represented in Fig.1, by the unshaded 

regions in the plane (&, pl), where the straight line 1 

and straight line 

Thus regions 

2 

p1 = + (1 + iv 

i=Jl<O, Pl> q (1 + Bl) (11) 

a>*7 PI <+(I +Bl) (12) 

correspond in the considered here model to stable combustion. 
In the shaded region of variation of parameters pl,pl there exist 51 with RsQ >Oy 

while at the boundary neutrally stable (ReP = 0), as well as damped solutions are possible. 
Let us consider in the plane &,,u,) the points and straight lines that correspondtoknown 

models. Thus the coordinate origin pl== ktl = o which lies inside the determined above instab- 
ility region (Fig.1) corresponds to Landau's model with constant flame propagation velocity 
u= uO. When &= ELM= 0 the cubic equation (10) reduces to the quadratic one whose solution 

is /l/ 

<J" = 
--a-I-(CL+a3_-a:)~" 

a(1 i-CL) 

Both Landau's solutions are real with one of them for a<1 is positive. Length of the 
perturbation wave for which this model of plane combustion front is applicable must exceed the 
width of the combustion zone, hence the flame in Landau's model is unstable relative to pert- 
urbations in which the wave length h>L. 

The straight line D,= 0 corresponds to the Markstein's model, In Fig.1 the part of 
axis p1 lying above the point at ordinate (1 - a)/ 2 coincides with the stability limit, and 
its remaining part lies inside the instability region. When fi, = 0 Eq.(lO) has two roots /2/ 

Hence when PI‘> (1 - CC)/2,Re Q,, < 0, and consequently combustion in Markstein's model is 
stable relative to short-wave perturbations whose wave length a<&, an unstable relative to 
perturbations of wave length h > A,,? I where A,,= 4n,UoL / (1 - CL). Allowance for the effect of 
curvature on flame velocity results, as previously, in instability relative to long-wave pert- 
urbations (perturbations whose wave length considerably exceeds the flame front thickness). 

In the model in /6/, unlike inthoseof Landau and Markstein, we obtain from conditions 
(12) for [j, > a / (1 - c) stability of the flame front with perturbations to long-wave n> h, 
and to short-wave perturbations with h( h,, where 

+, 
h* = (1 -cr)(l +p,, I, 

When p1 = cc/(1 -a) the solution of Eq.(lO) is of the form 

At stability limit (pl = a/(1- a), 0 < fcl <I/% we have, besides the damped solution, 
neutrally stable travelling waves whose propagation velocity along the flame front is 
U, v/l- &I)/ a.. When p1 = a/(1 - a), the flame is unstable relative to short-wave pertur- 

bations (h< 4np,,L). 
Further analysis of solutions of the cubic equation (10) is linked with the determination 

in the plane @I~ILJ of domains of complex roots of this equation. When ImQ#O‘ we call 
solutions of Eq.(lO), wave solutions. The perturbation propagation velocity along the com- 
bustion front is then u, Im&. Depending on the sign of ReQ wave solutions are either 
damped (ReQ(0) or increasing (Re&; 0). We call perturbations whose ReQ = 0 ,travelling 
waves. 
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The cubic equation (10) may have either three different real roots when its discriminant 
isnegative,or three real roots, tnoofwhichare the samewhen Q=F, or, when Q ) 0, where 

one real and two complex conjugate roots. 
The limit of wave solution existence is determined by the condition 

Q=O (15) 

Substituting in (15) expressions (14) for coefficients p,q, and (lo) for ai, we obtain for 
11.~1 the cubic equation 

mopi + q.h2 + m4.h + m3 = 0 

m, = p13, ml = 3p,p,? + q12 

m, = ~P,'F, + 2wh m3 = PO3 + qo2 

TO eliminate PI in coefficients p,q, and si we introduce the following notation: 

9 = 40 -I- qlpl! 90 = +$- 
~1% 

-w++ 

ql=-*+* 
0 0 

The limit of existence of wave solutions of Eq.(lO) for a = 0.2 is shown in Fig.2. The 
two upper branches of curve Q = 0 are denoted there by pll (fix) and pIa (&), and the lower 

curve by pls (BJ- The straight lines I and 2 are the same as in Fig.1. The relativeposition 
of domains of instability and of existence of wave solutions shown in Fig.2 is valid for any 
DL. Thus curve 11x3 (@I) is tangent to straight lines I and 2, with the point of tangencywith 

line 2 at (a /(I - a);0,5), as can be verified by substitution. 
We denote by PI" the value of fl, for which curve PI3 (BJ intersects axis 1"1 = 0. It 

wil.l. be seen that f&O is close to 

B 1= (Z$& 

at which straight line 1 intersects the fil axis (Fig.2). 
The intersection points of curves pll(fil) and pla(&) with axis fil = 0 are determined by 

the sign of the radicant in Markstein's solution (13). We find that when 

&24~16& &*= 
I - (-i1)'(1 --a-as+aa)tif (16) 

a 

at the flame front surface damped wave solutions with 

Ret’&,= -*<o (17) 

moving along the y-axis at velocity 

v_~~~~sl,, u0 [l-a-a'~~~~~~1-~)~~"1 (18) 

are possible. 
The limit pIgoof wave solutions in Markstein's model is shown in Fig.3, as a function of 

a,. and in Fig.4 is shown the dependence of the reduced value of wave propagation velocity 
V/U,=Im 8, on & which is inversely proportional to wave length. Conditions (16) imply 
that in Markstein's model wave solutions are only possible in the case of fairly short-wave 
perturbations 

2nlloL i p11a< A,< 2spoL j cat 

Consider the limit case of a-0 when &=O. From condition (16) we obtain the wave 
solution existence limit 
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(19) 

Fig.3 Fig.4 

Fig.2 

and from (17) and (18) the real part and the principal term of wave perturbation propagation 

velocity along the flame front 

Re 9, = -(l + 111) < 0, V = O,cz"~~(21"~ - l)lb (20) 

Formula (19) and the first of relations (20) were obtained in /3/ for extremely small 
a@+0) when investigating waves travelling along the flame front (&a= 0). The second of 

relations (20) implies that wave perturbations in Markstein's model must be damped as a-0. 

Let us revert to the general case. The increase of perturbations depends on the index 
of exponent 

--i (Im o)t = pl(Re Q)U,tl(p,,L) 

because of this we introduce parameter S = ~1~ ReQ which defines the increase (S > 0) or 
decrease (S < 0) of perturbations during the time it takes the front to pass the distance 
proportional to the combustion zone thickness. 

s 

Fig.5 Fig.6 

The dependence of parameter S on PI, 
for several values of parameter PI 

which is inversely proportionaltothewavelength, 
is shown diagrammatically in Fig.5, where solid lines 

relate to Im & = 0 and the dash ones to Im Q # 0. 
For 

in that of 
-I< PI<0 (Fig.S,I) the solution in the domain of long waves is increasing, and 
short waves we have damped wave solutions. When 

two Markstein's solutions. When 0~ PI 4 PI0 

PI = 0 (Fig.5,2) there are only 
(Fig.5,3) the considered here model is unstable 

relative to perturbations of any wave length. when f% > I-%" we have in the range of longwaves 
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(PI< pla) wave solutions that are increasing for PI"< &< a/(% -a), neutrally stable, for 
81 = a!(1 -U), and damped when PI>- a/(4 -a) CFig.5, 4 - 6). 

When p,O< PI < r*i(i - a) we have wave perturbations on the flame front surface which 
move along the y-axis and increasewithtime. Their nonlinear inter-action may resultin some 
form characteristic of a standing wave which can be related to the cellular flame structure 
observed experimentally /2/. 

Let us assume that the nonlinear analysis led to the determination of pl* that corres- 
ponds to the obtained resultant perturbation, then such perturbation wave length or dimension 
of the cell is h* = Zx~,.? i pi*. Let us obtain the following estimate when &*~0.25. 'Then with 

[lo- 1,L- 3.l0 ') cm we obtain h*- 1 cm, i.e. the cell dimension is close to the experimentally 
obtained /2,11/. Note that the cell dimension calculated earlier using Markstein's modelwith 
I-(> which correspondstothemaximumof S (Fig.S,Z) is of the same order, namely, Snp&/ (I - a) 
(with p, =-: ( t- ‘1) I/ (ri. 

When p, = a/(l - c), travelling waves of length h; /In,@ moving along the combustion 
front at velocity v = u,[(i -z~l)/a~l~ are generated on the flame front. When fi, > a/ (l- 

o.) (Fig.5,@, we have results that conform to experimental data /12, 13/ as regards combus- 
tion front stability relative to long-wave perturbations and instability relative to short- 
wave ones. 

The dependence of parameter S and of wave perturbation propagation velocity along the 
flame front on p1 is shown in Fig.6 for CL = 0.2 and several values of pl. 

Note that the establishement of flame front stability relative to long-wave perturbations 
and the determination of the domain of wave solution existence was made possible by taking in- 
to account the effect of pressure perturbations ahead of the flamefrontonthecombustionrate. 
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